翻訳と辞書
Words near each other
・ Schuylkill County Airport
・ Schuylkill County Bridge No. 113
・ Schuylkill County Bridge No. 114
・ Schuylkill County, Pennsylvania
・ Schuylkill Expressway
・ Schuylkill Expressway Bridge
・ Schuylkill Fishing Company
・ Schuylkill Gap
・ Schuylkill Haven Area School District
・ Schuylkill Haven, Pennsylvania
・ Schuylkill Institute of Business and Technology
・ Schuylkill Mall
・ Schur's inequality
・ Schur's lemma
・ Schur's lemma (disambiguation)
Schur's lemma (from Riemannian geometry)
・ Schur's property
・ Schur's theorem
・ Schur-convex function
・ Schurman
・ Schurman Commission
・ Schurmann Family
・ Schurmsee
・ Schurr
・ Schurr High School
・ Schurre
・ Schurter
・ Schurwald
・ Schurz
・ Schurz Communications


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Schur's lemma (from Riemannian geometry) : ウィキペディア英語版
Schur's lemma (from Riemannian geometry)
Schur's lemma is a result in Riemannian geometry that says, heuristically, whenever certain curvatures are pointwise constant then they are forced to be globally constant. It is essentially a degree of freedom counting argument.
== Statement of the Lemma ==

Suppose (M^n,g)^ such that
:\mathrm^ such that
: \mathrm^{}_{}(X_p) = f(p) X_p for all X_p \in T_p M and all p \in M,
:then f is constant, and the manifold is Einstein.
The requirement that n \geq 3 cannot be lifted. This result is far from true on two-dimensional surfaces. In two dimensions sectional curvature is always pointwise constant since there is only one two-dimensional subspace \Pi_p \subset T_p M, namely T_p M. Furthermore, in two dimensions the Ricci curvature endomorphism is always a multiple of the identity (scaled by Gauss curvature). On the other hand, certainly not all two-dimensional surfaces have constant sectional (or Ricci) curvature.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Schur's lemma (from Riemannian geometry)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.